BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN VOL. 42 2212—2219 (1969)

Anharmonic Potential Constants and Vibrational and Rotational Parameters for Hydrogen Cyanide

Toru Nakagawa and Yonezo Morino

Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo (Received January 31, 1969)

The general fourth-order potential constants, f, for hydrogen cyanide were determined by a least-squares analysis applied to the observed values of the vibrational energies and the rotational constants for six isotopic species, $H^{12}C^{14}N$, $H^{13}C^{14}N$, $H^{12}C^{15}N$, $D^{12}C^{14}N$, $D^{13}C^{14}N$, and $D^{12}C^{15}N$. The normal frequencies, ω_i , the cubic and quartic potential constants, k_{ijk} and k_{ijkl} , the anharmonicity constants, x_{ij} , the vibration-rotation interaction constants, α_i , and the Coriolis coupling constants, ζ_{ij}^x were calculated for the six isotopic species.

determination ofThe the intramolecular potential function is one of the most important problems in molecular spectrosocpy. Once this has been done, various properties of molecules can be coordinated in a unified way upon this fundamental function. Suzuki, Pariseau, and Overend¹⁾ determined the cubic and quartic potential constants for hydrogen cyanide by means of a leastsquares fit to the observed values of the vibrational energies, ν , and the rotational constants, B_{ν} , in various vibrational states. Though they used 87 observed values for two isotopic species, H12C14N and D12C14N, the final values of the nineteen parameters still have intensive mutual correlations. Accordingly, a further refinement of the potential function is very desirable if one wants to predict various properties based on the potential function. Since the observed values of ν and B_{ν} are available for four other isotopic species, i. e., H13C14N, H12C15N, D13C14N, and D12C15N, they are also used in the least-squares analysis in the present study; the number of the observed values has increased to 124.

Another aim of the present study is to obtain the vibrational and rotational parameters, such as ω_i , k_{ijk} , k_{ijkl} , x_{ij} , and α_i and to predict the vibrational energies, ν , and the rotational constants, B_v , in various vibrational states of the six isotopic species. The uncertainties of these predicted values are also estimated on the basis of the probable errors of the potential constants, f, and their mutual correlation. It should be noticed that the estimated uncertainties of the calculated values will often become unreasonably large unless the correlations among the f constants are taken into account.

Determination of Anharmonic Potential Constants

The method described in our previous paper²⁾ on the anharmonic potential constants of OCS was applied to the present least-squares calculation as follows.

Observables. The observed values of the vibrational energies, ν , and the rotational constants, $B_{\nu}-B_0$, for the six isotopic species used in the least-squares fit are listed in Columns 2 and 6 of Table 1, together with their references.³⁻¹⁰) The values for higher vibrational levels with $\nu_1+\frac{1}{2}\nu_2+\nu_3>4$ were not used in the analysis in order to avoid the influence of higher-order terms and accidental perturbations.

Parameters. The variable parameters to be determined were the nineteen potential constants, f, up to the fourth order in the expansion formula of:

$$\begin{split} V &= \frac{1}{2} f_R \Delta R^2 + f_{Rr} \Delta R \Delta r + \frac{1}{2} f_r \Delta r^2 \\ &+ \frac{1}{2} f_\alpha \Delta \alpha^2 + f_{RR} \Delta R^3 + f_{RRr} \Delta R^2 \Delta r \\ &+ f_{Rrr} \Delta R \Delta r^2 + f_{rrr} \Delta r^3 + f_{R\alpha\alpha} \Delta R \Delta \alpha^2 \end{split}$$

- 3) A. G. Maki and L. R. Blaine, ibid., 12, 45 (1964).
- A. G. Maki, E. K. Plyler and R. Thibault, J. Opt. Soc. Am., 54, 869 (1964).
- 5) D. H. Rank, G. Skorinko, D. P. Eastman and T. A. Wiggins, *ibid.*, **50**, 421 (1960).
- H. C. Allen, Jr., E. D. Tidwell and E. K. Plyler, J. Chem. Phys., 25, 302 (1956).
- A. E. Douglas and D. Sharma, *ibid.*, 21, 448 (1953).
- 8) W. W. Brim, J. M. Hoffman, H. H. Nielsen and K. N. Rao, J. Opt. Soc. Am., 50, 1208 (1960).
- C. A. Burrus and W. Gordy, Phys. Rev., 101, 599 (1956).
- 10) D. H. Rank, H. D. Rix and R. E. Kagarise, J. Chem. Phys., **20**, 1437 (1952).

I. Suzuki, M. A. Pariseau and J. Overend, J. Chem. Phys., 44, 3561 (1966).

T. Nakagawa and Y. Morino, J. Mol. Spectry., 26, 496 (1968).

Table 1. Observed and calculated values of ν and B_{v}

Species	Vibra	ational energ	gy ν (cm-	1)	Rotation	nal constant	$B_v - B_0(10^{-3}$	cm-1)
State	Obsd	Calcd	О-С	Weighta	Obsd	Calcd	O-C	Weightb
H12C14	N							
$00_{0}0$					1478.219 i	1478.205	0.014	12.5
10°O	2096.85 с	2096.85	0.00	5.0	$-10.0_{7} c$	-10.068	-0.0_{02}	12.3
0200	1411.43 d	1412.08	-0.65	0.078	7.59_8 c	7.385	0.21_{3}	0.78
0001	3311.48 e	3311.45	0.03	5.0	-10.42_1 e	-10.418	-0.00_3	12.5
20°0	4173.07 e	4172.79	0.28	0.078		-20.135		
12°0	3502.13 с	3501.70	0.43	0.059	-2.748 c	-2.683	-0.065	0.595
$04^{0}0$	2802.85 c, k	2804.63	-1.78	0.0012		14.770		
10°1	5393.70 e	5393.69	0.01	1.25	-20.286e	-20.486	0.200	4.2
02°1	4684.32 e	4685.57	-1.25	0.059	-2.37_{7} c	-3.033	0.65_{6}	0.595
$00^{\circ}2$	6519.61 e	6519.48	0.13	0.078	-21.151 e	-20.836	-0.315	0.78
2200	5571.89 f, k	5570.41	1.48	0.0195		-12.750		
1201	6761.33 e	6760.59	0.74	0.0446		-13.101		
1002	8585.57 e	8587.11	-1.54	0.059	-30.82 e	-30.904	0.084	0.595
0003	9627.02 g	9624.08	2.94	0.0068	-32.21 e	-31.255	-0.95_{5}	0.154
1202	9914.41 g	9916.05	-1.64	0.016	-24.02 g	-23.519	-0.50_{1}	0.219
1003	11674.46 e	11677.11	-2.64	0.0061	-41.61 e	-41.322	-0.28_{8}	0.137
0004	12635.90 е	12625.25	10.65	0.0012	-43.794 e	-41.673	-2.121	0.064
0110	711.98 h	712.35	-0.37	2.5	3.549 с	3.693	-0.144	6.25
11 ¹ 0	2805.58 с	2805.59	-0.01	0.83	−6.657 c	-6.375	-0.282	3.12
0310	2113.46 с	2114.66	-1.20	0.0068	11.35 ₉ c	11.078	0.281	0.152
0111	4004.17 e	4004.83	-0.66	0.83	-6.65_9 e	-6.726	0.06,	3.12
2110	4878.27 e	4877.93	0.34	0.056	-16.9_{0} f	-16.443	-0.4_{57}	0.568
13¹0	4201.29 e	4200.67	0.62	0.0060	-10.3_0 1	1.010	0.157	0.500
1111	6083.35 e	6083.47	-0.12	0.38	-16.639 e	-16.793	0.154	1.79
0311			-0.12 -2.33	0.0060	-10.055 6	0.659	0.134	1.75
0112	5366.86 е 7192.75 е	5369.19 7193.89	-2.33 -1.14	0.056	−17.097 e	-17.144	0.047	0.568
								0.366
1112	9256.11 g	9257.92	-1.81	0.042	-26.82 g -27.72 g	-27.212 -27.562	0.392	0.136
0113	10280.30 g	10279.53	0.78	0.0060	-21.12 g		-0.15_{8}	0.130
0220	1426.53 c	1427.55	-1.02	0.039	0.50	7.385	0.04	0.990
1220	3516.88 c	3517.21	-0.33	0.0303	$-3.52_{6} c$	-2.683	-0.84_{4}	0.338
0420	2818.16 с	2820.07	-1.91	0.0012		14.770		
0221	4699.21 e	4701.08	-1.87	0.0303		-3.033		
H13C1	'N				1490 000 -	1420 070	0.010	12.5
0000		0000 05			1439.988 e	1439.978	0.010	12.5
1000	2002 51	2063.05	0.05	5.0	0.60.1	-9.741	0.01	10.0
0001	3293.51 e	3293.46	0.05	5.0	-9.63 d	-9.648	0.018	12.3
1001	5343.66 e	5343.62	0.04	1.25	-19.19 e	-19.389	0.19,	4.15
0201	4655.86 e	4657.19	-1.33	0.059	-3.09 e	-3.058	-0.03_{2}	0.595
0002	6483.28 e	6483.17	0.11	0.078	−19.55 e	-19.296	-0.25_{4}	0.78
1002	8519.24 e	8520.43	-1.19	0.059	00.0	-29.037	0.0	
0003	9571.73 ј	9569.13	2.60	0.0068	-29.2 j	-28.944	-0.2_{56}	0.154
10°3	11591.42 ј	11593.50	-2.08	0.0061	-38.8 j	-38.685	-0.1_{15}	0.137
0004	12561.84 j	12551.35	10.49	0.0012	-40.6_{6} j	-38.593	-2.0_{68}	0.064
$01^{1}0$	707.39 e	706.34	1.05	2.5	3.20 e	3.295	-0.09_{5}	6.25
11 ¹ 0	2765.32 с	2765.27	0.05	0.83		-6.446		
01^{1} 1	3982.22 e	3981.44	0.78	0.83		-6.353		
1111	6028.79 e	6027.47	1.32	0.38		-16.094		
0112	7153.07 e	7152.78	0.29	0.056	−15.949 e	-16.001	0.052	0.568
02°1	4675.03 e	4672.41	2.62	0.0303	-2.79 e	-3.058	0.26_{8}	0.338
H12C1	'n				1/25 07 3	1435.226	0.04	11 1
1000		2064.35			1435.27 d		0.04_{4}	11.1
10°0 00°1	3310.09 d	3310.13	-0.04	5.0	-10.02_8 d	-9.655 -10.020	-0.00_{8}	12.3
01 ¹ 0	3310.03 U	711.41	-0.01	0.0	10.028 U	3.541	0.008	12.0

Table 1. (continued)

Species	Vibra	tional energ	gy ν (cm-	1)	Rotatio	nal constant	$B_v - B_0(10^{-3})$	cm ⁻¹)
state	Obsd	Calcd	О-С	Weighta	Obsd	Calcd	O-C	Weightb
D12C14	N							
0000					1207.747 e	1207.692	0.055	25.0
1000	1925.26 d	1925.24	0.02	6.67	-6.55 d	-6.542	-0.00_{8}	24.4
0200	1129.98 d	1130.29	-0.31	0.104	8.87 d	8.783	0.08_{7}	1.56
0001	2630.30 d	2630.34	-0.04	6.67	-10.32 ₉ d	-10.264	-0.06_{5}	24.4
20°0	3836.35 f	3836.79	-0.44	0.104	-13.63 f	-13.084	-0.54_{6}	1.56
1200	3060.67 d	3061.56	-0.89	0.078	1.92 ₆ d	2.240	-0.31_{4}	1.19
10°1	4523.27 e	4523.18	0.09	1.67	-16.61_0 e	-16.807	0.197	8.26
0201	3729.12 d	3729.03	0.09	0.078	-0.83 d	-1.482	0.65_{2}	1.19
00°2	5220.24 d	5219.69	0.55	0.104	-20.69 d	-20.529	-0.16_{1}	1.56
01¹0	569.04 d	569.30	-0.26	3.33	4.34 d	4.391	-0.05_{1}	12.3
11 ¹ 0	2497.14 d	2497.56	-0.42	1.11	-2.37 d	-2.151	-0.21_{9}	6.21
1110	3183.67 d	3183.85	-0.18	1.11	-5.69 d	-5.873	0.18_{3}	6.21
21 ¹ 0	4410.96 f, k	4412.13	-1.17	0.074		-8.693		
13¹0	3623.94 d, k	3625.56	-1.62	0.0080		6.632		
1111	5079.46 e	5079.71	-0.25	0.513	-12.056 d	~ 12.415	0.359	3.56
0112	5757.88 d	5757.40	0.48	0.074	-15.79 d	-16.138	0.34_{8}	1.13
0220	1137.94 d	1138.59	-0.65	0.052	8.66 d	8.783	-0.12_{3}	0.782
1220	3068.63 d	3069.88	-1.25	0.040	1.56 d	2.240	-0.68_{0}	0.676
$02^{2}1$	3736.94 d	3737.37	-0.43	0.040	-1.04 d	-1.482	0.442	0.676
D13C14	N						_	
0000					1187.073 d	1187.017	0.057	12.5
10°0	1911.84 d	1911.81	0.03	6.67		-6.420		
00°1	2590.07 d	2590.05	0.02	6.67	-9.74 d	-9.648	-0.09_{2}	24.4
0110		561.60				4.054	-	
$\mathbf{D}^{12}\mathbf{C}^{15}$	V							
0000					1173.0 d	1173.080	-0.0_{79}	7.0
10°0		1900.12				-6.290	.•	
00°1	2621.19 d	2621.22	-0.03	6.67	$-10.00_8 d$	-9.883	-0.12_{5}	24.4
0110		568.06			-	4.236	·	

- a) Statistical weights in the least-squares analysis, in cm2 units.
- b) Statistical weights in 106 cm² units.
- d) Maki et al., Ref. 4. f) Allen et al., Ref. 6.
- h) Brim et al., Ref. 8.
- j) Rank et al., Ref. 10.

- c) Maki et al., Ref. 3.
- e) Rank et al., Ref. 5. g) Douglas et al., Ref. 7. i) Burrus et al., Ref. 9.
- k) Only the Q branch has been observed.

Table 2. Fourth-order potential constants f of HCN determined by least-squares methods

Potential constant	Suzuki et al.a	This work	Unit	Potential constant	Suzuki et al.a	This work	Unit
$f_R(CN)$	18.776 ±0.17	18.707 ±0.016	md/Å	f_{RRRR}	17.52 ±6.9	27.09 ±1.2	md/ų
f_{Rr}	-0.216 ± 0.08	-0.211 ± 0.006	md/Å	f_{RRRr}	4.71 ± 7.7	0.73 ± 1.2	$\mathrm{md}/\mathrm{\AA^3}$
$f_r(CH)$	6.230 ± 0.03	6.244 ± 0.003	md/Å	f_{RRrr}	1.17 ± 3.0	1.07 ± 0.4	$\mathrm{md}/\mathrm{\AA^3}$
f_{α}	0.2592 ± 0.003	0.2598 ± 0.0004	łmd∙Å	f_{Rrrr}	1.05 ± 2.0	1.35 ± 0.4	$md/Å^3$
f_{RRR}	-19.227 ± 0.36	-20.846 ± 0.16	$md/Å^2$	f_{rrrr}	8.79 ± 0.7	6.38 ± 0.3	$\mathrm{md}/\mathrm{\AA^3}$
f_{RRr}	-1.335 ± 0.40	0.046 ± 0.22	$md/Å^2$	$f_{RR\alpha\alpha}$	-0.189 ± 0.46	-0.010 ± 0.10	$\mathrm{md}/\mathrm{\AA}$
f_{Rrr}	-0.322 ± 0.27	-0.496 ± 0.11	$md/Å^2$	$f_{Rr\alpha\alpha}$	0.196 ± 0.43	0.138 ± 0.06	$\mathbf{md}/\mathbf{\mathring{A}}$
frer	-6.085 ± 0.15	-5.626 ± 0.07	$md/Å^2$	$f_{rr\alpha\alpha}$	0.201 ± 0.23	-0.110 ± 0.07	$\mathbf{md}/\mathrm{\AA}$
$f_{R\alpha\alpha}$	-0.272 ± 0.05	-0.328 ± 0.02	md	$f_{\alpha\alpha\alpha\alpha}$	0.0029 ± 0.004	0.0014 ± 0.000	7 md∙Å
$f_{r\alpha\alpha}$	-0.134 ± 0.07	-0.054 ± 0.03	md	$\hat{\sigma}^2$		0.130	

a) Ref. 1. Table 3, Column (iii).

Table 3. Correlation factors among the f constants $(\times 10^{-8})$

TABLE J. CORRELATION FACIORS AMONG THE J CONSTANTS (XIO 7)	free fram fram fram frak fran fram from fram fram fram										38	-3895	55 36 -32	42	-24 27	13 -9 -8	-42 42 -61 55 47	81 -35 30 18 -14	31 -35 14 -29 -6 -3	26 93 -98 26 -37 -20 1 -30 -83 44	34 -41 11 -16 -9 0 -12
. (X 10.															52			30			
TANIS																			ı		
CONS	fr.													-22	9	-8	-61	-35	14	56	=
JNG THE	fraa												-32	45	27	6-	42	81	-35	- 98	-41
IORS AM	fRaa											-95	36	- 38	-24	13	-42	-87	31	93	34
TION FAC	frrr										38	- 38	55	-50	-52	26	66-	-37	15	56	10
CORRELA	fRrr									-87	-44	43	-46	26	32	-62	87	38	-17	-32	-14
DEE O.	fRRT								-75	92		-38	55	- 56	09-	36	-93	-35	6	56	Ξ
•	FRRR							98-	29	85	-34	29	55	48	29	-32	84	32	-5	- 18	
	f_a						-16	20	-20	21	40	-39	16	-12	8	10	-21	-50	27	39	- 56
	fr fr fr fa				-		- 10	-19	-26	12	29	-32	32	-44	2	-22	-24	-5	- 10	25	25
	f_{Rr}			71	-1	:	-	19	-29	11	27	-31	30	-70	3	-43	-22	-8	8	56	20
	f_R				2		0		12	13	- 10	11	-73	0	-51	38	13	-2	2	8-	
		JR	f_{Rr}	f	f_{α}	,	JRRR	f_{RRr}	f_{Rrr}	f_{rrr}	f_{Raa}	fraa	FRRRR	FRRRT	f_{RRrr}	fRrrr	frers	fRRaa	fRraa	frraa	faaaa

- $+ f_{r\alpha\alpha}\Delta r\Delta\alpha^2 + f_{RRRR}\Delta R^4 + f_{RRRr}\Delta R^3\Delta r$
- $+ f_{RRrr}\Delta R^2\Delta r^2 + f_{Rrrr}\Delta R\Delta r^3 + f_{rrrr}\Delta r^4$
- $+ f_{RR\alpha\alpha} \Delta R^2 \Delta \alpha^2 + f_{Rr\alpha\alpha} \Delta R \Delta r \Delta \alpha^2$

$$+ f_{rr\alpha\alpha} \Delta r^2 \Delta \alpha^2 + f_{\alpha\alpha\alpha\alpha} \Delta \alpha^4, \tag{1}$$

where ΔR and Δr denote the stretching displacements of the CN and CH bonds respectively, and $\Delta \alpha$, the bending displacement. The force constants obtained by Suzuki, Pariseau, and Overend¹⁾ were used as the initial values for the least-squares refinement. No account was taken of the resonance interactions, such as the Fermi resonance $(\omega_1 \sim 2\omega_2$ and $\omega_3 \sim 2\omega_2)$ and a third-order anharmonic resonance $(3\omega_1 \sim 2\omega_3)$. The equilibrium bond lengths were assumed to be $R_e(\text{CN})=1.15313 \,\text{Å}$ and $r_e(\text{CH})=1.06593 \,\text{Å}$, according to Rank, Skorinko, Eastman, and Wiggins.⁴⁾

Statistical Weights. The weights of ν and B_v in the least-squares analysis were evaluated by taking into account the uncertainties due to higher-order terms as well as the experimental uncertainties, according to the procedure suggested in our preceding paper.²⁾ The uncertainties of the former type were estimated on the basis that $\sigma_v^2 = 0.20 \text{ (cm}^{-1})^2$ and $\sigma_r^2 = 0.08 \times (10^{-3} \text{ cm}^{-1})^2$ for HCN, and $\sigma_v^2 = 0.15 \times (\text{cm}^{-1})^2$ and $\sigma_r^2 = 0.04 \times (10^{-3} \text{ cm}^{-1})^2$ for DCN. In Columns 5 and 9 of Table 1 the weights thus evaluated are shown in units of $(\text{cm}^{-1})^{-2}$ and $(10^{-3} \text{ cm}^{-1})^{-2}$ respectively.

The calculation was carried out by using the computer program described in our preceding paper²⁾ on the HITAC 5020E computer at the Computer Centre, The University of Tokyo.

The general fourth-order portential constants determined are shown in Column 2 of Table 2,

while their correlation factors are given in Table 3. The potential constants obtained in the present study are essentially the same as those obtained by Suzuki, Pariseau, and Overend, but they are more precise than the latter, as may clearly be seen from the probable errors listed in Table 2. The calculated values of ν and $B_v - B_0$ are tabulated in Columns 3 and 7 of Table 1, and the deviations, in Columns 4 and 8.

Potential Constants in the Normal-Coordinate System and the Vibrational and Rotational Parameters

On the basis of the force constants, f, determined above, the potential constants, ω_i , k_{ijk} , and k_{ijkl} , in the normal-coordinate representation were calculated for the six isotopic species; the results are shown in Table 4. These calculated values have the advantage that the isotopic relations among them are fully taken into account. The standard errors for ω and k were evaluated according to Eq. (20) of Ref. 2, with account taken of the correlations among the f constants. The ω and k constants vary to a large extent for different isotopic species as a result of the change in normal coordinates. Table 5 shows the contributions of the f constants to the k constants; the main term is underlined for each k constant. One can see that the contributions of bond-stretching f constants are predominant in the cubic and quartic k constants, including even those related to the bending vibration. The contributions of the cross terms are much smaller

Table 4. Potential constants in the normal-coordinate system (cm-1)

	H12C14N	H13C14N	H12C15N	$D^{12}C^{14}N$	$\mathrm{D^{13}C^{14}N}$	$D^{12}C^{15}N$
ω_1	2128.67±0.80a	2094.16	2095.12	1952.12±0.63a	1938.52	1925.83
ω_2	727.10 ± 0.51	720.71	726.01	579.85 ± 0.41	571.82	578.49
ω_3	3441.16 ± 0.44	3422.04	3439.85	2703.34 ± 0.72	2661.58	2794.30
k_{111}	-106.9 ± 0.5	-105.7	-104.6	-84.7 ± 0.4	-83.8	-82.9
k_{113}	53.3 ± 2.5	50.7	52.1	-3.7 ± 2.0	4.4	1.5
k_{122}	96.2 ± 1.4	85.0	92.7	184.7 ± 1.1	174.4	178.6
k_{133}	-216.3 ± 4.6	-198.0	-210.6	-329.6 ± 3.3	-315.7	-321.6
k_{223}	608.9 ± 1.3	613.7	612.7	269.7 ± 1.1	278.3	277.1
k_{333}	-289.0 ± 7.9	-291.6	-290.1	-90.1 ± 5.5	-100.0	-97.3
k_{1111}	6.47 ± 0.3	6.34	6.29	4.62 ± 0.2	4.53	4.47
k_{1113}	-5.23 ± 0.8	-4.86	-5.06	1.61 ± 0.7	0.49	0.88
k_{1122}	-14.38 ± 0.4	-12.45	-13.66	-37.45 ± 0.6	-34.35	-35.39
k_{1133}	14.00 ± 1.5	12.11	13.36	33.97 ± 1.8	31.74	32.50
k_{1223}	-89.35 ± 1.9	-82.56	-87.51	-90.64 ± 0.6	-88.44	-89.52
k_{1333}	28.74 ± 0.6	26.93	28.16	19.21 ± 0.5	19.93	19.79
k_{2222}	58.97 ± 2.0	59.69	59.56	23.40 ± 2.1	23.62	23.75
k_{2233}	-244.79 ± 4.8	-246.60	-246.30	-93.96 ± 1.9	-95.79	-96.21
k_{3333}	33.14 ± 1.5	33.44	33.29	11.00 ± 0.7	11.39	11.39

a) Standard error calculated by taking into account the correlations among the f constants according to Eq. (20) of Ref. 2.

Table 5. Contributions of the f constants to the k constants (cm^{-1})

(a) Cubic constants of H12C14N

	k ₁₁₁	k ₁₁₃	k ₁₃₃	k_{333}	k_{122}	k_{223}
$f_R(CN)$					33.0	-9.8
f_{Rr}					-10.6	2.3
$f_r(CH)$					135.7	676.3
f_{α}					-16.2	-57.2
f_{RRR}	-104.1	93.1	-27.8	2.8		
f_{RRr}	0.1	0.4	-0.3	0.0		
f_{Rrr}	-0.5	-4.6	-10.5	3.5		
f_{rrr}	-2.4	-35.7	-177.8	-295.3		
$f_{R\alpha\alpha}$					-42.5	12.7
$f_{r\alpha\alpha}$					-3.1	-15.3
Total	-106.9	53.3	-216.3	-289.0	96.2	608.9

(b) Cubic constants of D12C14N

	k ₁₁₁	k ₁₁₃	k ₁₃₃	k_{333}	k_{122}	k_{223}
$f_R(CN)$					53.0	-42.3
f_{Rr}					-6.2	3.1
$f_{\prime}(\mathrm{CH})$					194.3	323.5
f_{α}					-23.4	-27.6
f_{RRR}	-56.2	134.5	-107.3	28.5		
f_{RRr}	0.2	0.0	-0.3	0.2		
f_{Rrr}	-2.0	-4.9	-0.2	4.3		
f_{rrr}	-26.7	-133.2	-221.8	-123.1		
$f_{R\alpha\alpha}$					-27.6	22.0
$f_{r\alpha\alpha}$					-5.5	-9.1
Total	-84.7	-3.7	-329.6	-90.1	184.7	269.7

(c) Quartic constants of H12C14N

	k_{1111}	k_{1113}	k_{1133}	k_{1333}	k_{3333}	k_{1122}	k_{1223}	k_{2233}	k_{2222}
f_R						-1.32	0.79	-0.12	0.27
f_{Rr}						0.21	0.96	-0.31	-0.17
f_r						-2.59	-25.82	-64.34	70.76
f_{α}						0.59	3.40	7.84	-8.22
f_{RRR}						-5.11	3.04	-0.45	
f_{RRr}						0.11	-0.34	0.00	
f_{Rrr}						-1.01	-4.76	1.29	
f_{rrr}						-7.46	-74.40	-185.40	
$f_{R\alpha\alpha}$						1.90	6.13	-2.00	-0.70
$f_{r\alpha\alpha}$						0.14	1.17	2.41	-3.20
f_{RRRR}	6.27	-7.47	3.34	-0.66	0.05				
f_{RRRr}	0.07	0.31	-0.31	0.10	-0.01				
f_{RRrr}	0.05	0.45	0.90	-0.66	0.10				
f_{Rrrr}	0.03	0.39	1.86	2.70	-0.98				
frrrr	0.06	1.10	8.21	27.27	33.97				
$f_{RR\alpha\alpha}$						-0.06	0.04	-0.01	
$f_{Rr\alpha\alpha}$						0.36	1.71	-0.54	
$f_{rr\alpha\alpha}$						-0.13	-1.27	-3.17	
$f_{\alpha\alpha\alpha\alpha}$									0.22
Total	6.47	-5.23	14.00	28.74	33.14	-14.38	-89.35	-244.79	58.97

Table 5. (Continued)

(d) Quartic constants of D12C14N

	k_{1111}	k_{1113}	k_{1133}	k_{1333}	k_{3333}	k_{1122}	k_{1223}	k ₂₂₃₃	k_{2222}
f_R						-1.73	2.76	-1.10	1.05
f_{Rr}						0.26	0.22	-0.34	-0.22°
f_r						-8.29	-27.61	-22.99	29.02
f_{α}						1.42	3.54	2.97	-3.86
f_{RRR}						-6.67	10.65	-4.25	
f_{RRr}						0.06	-0.28	0.01	
f_{Rrr}						-1.24	-1.27	1.33	
f_{rrr}						-23.90	-79.57	-66.24	
$f_{R\alpha\alpha}$						2.22	0.85	-2.10	-1.09
$f_{r\alpha\alpha}$						0.44	1.26	0.87	-1.64
f_{RRRR}	2.75	-8.78	10.51	-5.59	1.12				
f_{RRRr}	0.09	-0.07	-0.19	0.24	-0.08				
f_{RRrr}	0.16	0.27	-0.30	-0.36	0.28				
f_{Rrrr}	0.24	1.02	1.05	-0.49	-0.89				
f_{rrrr}	1.38	9.17	22.89	25.41	10.58				
$f_{RR\alpha\alpha}$						-0.03	0.05	-0.02	
$f_{Rr\alpha\alpha}$						0.53	0.46	-0.70	
f_{rraa}						-0.51	-1.70	-1.41	
$f_{\alpha\alpha\alpha\alpha}$									0.14
Total	4.62	1.61	33.97	19.21	11.00	-37.45	-90.64	-93.96	23.40

Table 6. Vibrational and rotational anharmonic terms (cm⁻¹)

	$\rm H^{12}C^{14}N$	H13C14N	H12C15N	D ¹² C ¹⁴ N	D13C14N	D12C15N
x ₁₁	-10.45 ± 0.38^{a}	-10.27	-10.13	-6.84 ± 0.29^{a}	-6.80	-6.69
x_{12}	-3.61 ± 0.22	-4.13	-3.46	3.01 ± 0.20	2.03	3.11
x ₁₃	-14.61 ± 0.22	-12.90	-14.08	-32.40 ± 0.26	-30.29	-30.90
x_{22}	-2.44 ± 0.17	-2.31	-2.46	-2.08 ± 0.11	-1.91	-2.10
x ₂₃	-18.98 ± 0.21	-18.38	-18.91	-15.80 ± 0.24	-14.91	-15.67
x ₃₃	-51.71 ± 0.21	-51.87	-51.88	-20.50 ± 0.36	-20.74	-20.98
x_{ll}	5.35 ± 0.09	5.24	5.40	3.29 ± 0.64	3.13	3.33
$\alpha_1 \times 10^3$	$10.068\!\pm\!0.068$	9.741	9.655	6.542 ± 0.051	6.420	6.290
$\alpha_2 \times 10^3$	-3.693 ± 0.047	-3.295	-3.541	-4.391 ± 0.038	-4.054	-4.236
$\alpha_3 \times 10^3$	10.418 ± 0.043	9.648	10.020	10.264 ± 0.037	9.648	9.883

a) Calculated standard error. See Footnote a of Table 4.

TABLE 7. CORIOLIS COUPLING CONSTANTS

	H12C14N	$\rm H^{13}C^{14}N$	H12C15N	$D^{12}C^{14}N$	D ¹³ C ¹⁴ N	D12C15N
£12*	0.1529±0.0007a)	0.1631	0.1536	-0.0871 ± 0.0010^{a}	-0.0645	-0.0719
€ 23 ^x	0.9882 ± 0.0001	0.9866	0.9881	0.9962 ± 0.0001	0.9979	0.9974

a) Calculated standard error.

Table 8. Bond-stretching anharmonicities for HCN in comparison with those for CN and CH (in ${\rm \AA}^{-1}$)

	Diatomic molec. CN or CH	HCN
CN bond a ₃	2.268	2.229
a_4	2.294	2.228
CH bond a_3	1.981	1.802
a_4	2.087	1.872

than those of the principal terms.

The vibrational anharmonicity constants, x_{ij} , and the vibration-rotation interaction constants, α_i , were also calculated. They are tabulated in Table 6. The calculated values of the Coriolis coupling constants, ζ_{12}^x and ζ_{23}^x , are listed in Table 7.

The *l*-type doubling constants and the centrifugal distortion constants were also calculated, together with their *v*- and *J*-dependent terms. The cal-

 k_{122} (cm⁻¹)

 k_{223} (cm⁻¹)

 $\omega_3 - 2\omega_2 \text{ (cm}^{-1})$

from ν and B_v in the present study.

Ratio

Ratio

277.1

0.180

1537.

H12C15N D13C14N H12C14N H1-C14N D12C14N D12C15N 174.4 96.2 85.0 92.7184.7 178.6 792. $\omega_1 - 2\omega_2 \text{ (cm}^{-1)}$ 674. 653. 643. 795. 769. 0.130 0.1440.2330.2190.2320.143

269.7

0.175

1544.

Table 9. Ratio of the fermi resonance term $|k_{stt}/(\omega_s-2\omega_t)|$

612.7

0.308

1988.

culated values of q_v and D_v are in good agreement with the observed values, as will be reported elsewhere.11) This agreement offers positive support for the anharmonic potential constants obtained

608.9

0.306

1987.

613.7

0.310

1981.

Discussion

The two parameters a_3 and a_4 which are defined¹²⁾ iby:

$$a_3 = -2f_{rrr}/f_r \tag{2}$$

.and:

$$a_4 = [24 f_{rrrr}/7 f_r]^{1/2} \tag{3}$$

are convenient for expressing the bond-stretching anharmonicity. Their values for HCN are compared with those for CH and CN in Table 8. The table suggests that the potential function for a bond stretching in the HCN molecule is quite similar to that in the corresponding diatomic molecule, CH or CN.

As for the anharmonic resonance in HCN, an accidental perturbation of the $3\omega_1-2\omega_2$ type has been pointed out by Douglas and Sharma.⁷⁾ The perturbation of this type was disregarded in the present study without any serious effect on the potential constants determined above. This is because the perturbation mentioned above is significant only for highly-excited vibrational states,

such as (00°4), (30°2), (10°4), and (40°2), and the weights of the observed values for these states were zero or small in the least-squares analysis.

278.3

0.183

1518.

Nevertheless, a problem was found in the present study concerning the Fermi resonance. In the present calculation the k_{122} and k_{223} terms were treated with a second-order perturbation theory without any special consideration of the Fermi resonances, $\omega_1 - 2\omega_2$ and $\omega_3 - 2\omega_3$. It was found, however, that the k_{122} and k_{223} constants thus obtained were not small enough compared with the energy differences, $\omega_1-2\omega_2$ and $\omega_3-2\omega_2$ respectively. Table 9 shows that the $|k_{stt}/(\omega_s-2\omega_t)|$ ratios for the $\omega_3-2\omega_2$ resonance of HCN and the $\omega_1 - 2\omega_2$ resonance of DCN are even larger than the ratio, 0.231, for the well-known case of the $\omega_1 - 2\omega_2$ resonance for OCS.2) Rigorously speaking, these Fermi resonances must be treated separately from the usual perturbation calculation, as was done for OCS. According to such a treatment, some relations must be expected among the ν and B_n values; for instance:

$$B(02^{0}0) - B_{0} < 2[B(01^{1}0) - B_{0}]$$
 (4)

and:

$$B(02^{2}0) > B(02^{0}0). (5)$$

The observed values, however, do not satisfy these relations. It seems likely that the discrepancies suggest the importance of such higher-order effects as the y terms. In the present study no corrections for the third- and higher-order perturbation were taken into account; therefore, the exact diagonalization of the Fermi resonance terms remains to be done in the future.

¹¹⁾ T. Nakagawa and Y. Morino, J. Mol. Spectry., to be published.

¹²⁾ K. Kuchitsu and Y. Morino, This Bulletin, 38, **.**805 (1965).